Cancer Fighting Food References Section III

  1. Almond consumption improved glycemic control and lipid profiles in patients with type 2 diabetes mellitus. Li, Sing-Chung, et al., et al. [ed.] Christos S. Mantzoros. 4, Boston: Elsevier Inc., April 2011, Metabolism, Vol. 60, pp. 474-479. DOI: 10.1016/j.metabol.2010.04.009; http://linkinghub.elsevier.com/retrieve/pii/S0026049510001289. ISSN: 0026-0495; PMID: 20580779.
  2. Pomet, Pierre, Lémery, Nicolas and Pitton de Tournefort, Joseph. A Complete History of Drugs. Fourth Edition. London: J. and J. Bonwicke, S. Birt, W. Parker, C. Hitch, and Wicksteed, 1748. p. 422.
  3. Almonds Reduce Biomarkers of Lipid Peroxidation in Older Hyperlipidemic Subjects. Jenkins, David J.A., et al., et al. [ed.] A. Catharine Ross. 5, University Park: American Society for Nutrition, May 2008, Journal of Nutrition, Vol. 138, pp. 908-913. ISSN: 0022-3166; PMID: 18424600.
  4. The Protective Effect of Peanut, Walnut, and Almond Consumption on the Development of Breast Cancer. Soriano-Hernandez, A.D., et al., et al. [ed.] 2, Leuven: S. Karger AG, Basel, August 2015, Gynecologic and Obstetric Investigation, Vol. 80, pp. 89-92. DOI: 10.1159/000369997; https://www.karger.com/Article/Abstract/369997. ISSN: 0378-73466.
  5. Whole almonds and almond fractions reduce aberrant crypt foci in a rat model of colon carcinogenesis. Davis, Paul A. and Iwahashi, Christine K. [ed.] Manfred Schwab. 1, Heidelberg: Elsevier Ireland Ltd., April 10, 2001, Cancer Letters, Vol. 165, pp. 27-33. DOI: 10.1016/S0304-3835(01)00425-6; https://linkinghub.elsevier.com/retrieve/pii/S0304383501004256. ISSN: 0304-3835; PMID: 11248415.
  6. Almond Consumption Reduces Oxidative DNA Damage and Lipid Peroxidation in Male Smokers. Li, Ning, et al., et al. [ed.] A. Catharine Ross. 12, University Park: Oxford University Press, December 1, 2007, The Journal of Nutrition, Vol. 137, pp. 2717-2722. DOI: 10.1093/jn/137.12.2717; https://academic.oup.com/jn/article/137/12/2717/4670068. ISSN: 0022-3166; PMID: 18029489.
  7. A Pilot Study on the Effects of Almond Consumption on DNA Damage and Oxidative Stress in Smokers. Jia, Xudong, et al., et al.2, s.l.: Taylor and Francis Group, LLC, February 2006, Nutrition and Cancer, Vol. 54, pp. 179-183. DOI: 10.1207/s15327914nc5402_4; https://www.tandfonline.com/doi/abs/10.1207/s15327914nc5402_4. ISSN: 0163-5581; PMID: 16898862.
  8. Determination of Flavonoids and Phenolics and Their Distribution in Almonds. Milbury, Paul E., et al., et al. [ed.] James N. Seiber. 14, Davis: American Chemical Society, June 2, 2006, Journal of Agricultural and Food Chemistry, Vol. 54, pp. 5027-5033. DOI: 10.1021/jf0603937; http://pubs.acs.org/doi/abs/10.1021/jf0603937. ISSN: 0021-8561; PMID: 16819912.
  9. Induction of Apoptosis of SW480 Human Colon Cancer Cells by (−)-Epicatechin Isolated from Bulnesia sarmienti. Kim, Daeik, Mollah, Mohammad Lalmoddin and Kim, Kilsoo. [ed.] John G. Delinasios. 12, Highlands: The International Institute of Anticancer Research, December 2012, Anticancer Research, Vol. 32, pp. 5353-5361. ISSN: 0250-7005; PMID: 23225437.
  10. Antileukemic action of (−)-epicatechin in the spleen of rats with acute myeloid leukemia. Papież, M.A., et al., et al. [ed.] Joseph F. Borzelleca and Alan R. Boobis. 12, Richmond; London: Elsevier Ltd., December 2010, Food and Chemical Toxicology, Vol. 48, pp. 3391-3397. DOI: 10.1016/j.fct.2010.09.010; http://www.sciencedirect.com/science/article/pii/S0278691510005739?via%3Dihub. ISSN: 0278-6915; PMID: 20837083.
  11. Synergistic Effects of (−)-Epigallocatechin Gallate with (−)-Epicatechin, Sulindac, or Tamoxifen on Cancer-preventive Activity in the Human Lung Cancer Cell Line PC-9. Suganuma, Masami, et al., et al. [ed.] Frank J. Rauscher III. 1, Philadelphia: American Association for Cancer Research, January 1, 1999, Cancer Research, Vol. 59, pp. 44-47. ISSN: 0008-5472; PMID: 9892181.
  12. Modulation of transcription factor NF-κB in Hodgkin's lymphoma cell lines: Effect of (−)-epicatechin. Mackenzie, Gerardo G. and Oteiza, Patricia I. [ed.] Michael Davies and Helmut Sies. 10, Sydney: Informa Plc, April 26, 2006, Free Radical Research, Vol. 40, pp. 1086-1094. DOI: 10.1080/10715760600788396; http://www.tandfonline.com/doi/full/10.1080/10715760600788396. ISSN: 1071-5762; PMID: 17015253.
  13. Epicatechin enhances anti-proliferative effect of bleomycin in ovarian cancer cell. Hosseinimehr, Seyed Jalal, Rostamnejad, Mostafa and Ghaffari-rad, Vahid. [ed.] Alireza Rafiei. 3, Sari: Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, November 2013, Research in Molecular Medicine, Vol. 1, pp. 25-28. DOI: 10.18869/acadpub.rmm.1.3.25; http://rmm.mazums.ac.ir/article-1-54-en.html. ISSN: 2322-1348.
  14. Epicatechin Stimulates Mitochondrial Activity and Selectively Sensitizes Cancer Cells to Radiation. Elbaz, Hosam A., et al., et al. [ed.] Gabriele Multhoff. 2, Muenchen: Public Library of Science, February 6, 2014, PLoS ONE, Vol. 9, p. e88322. DOI: 10.1371/journal.pone.0088322; http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088322. eISSN: 1932-6203; PMID: 24516636.
  15. Evaluation of curcumin in combination with 6-shogaol and epicatechin for the chemoprevention of prostate cancer. Saha, Achinto, et al., et al. [ed.] George C. Prendergast. 8, Wynnewood: American Association for Cancer Research, April 2013, Cancer Research, Vol. 73, p. Supplement; Abstract 3704. DOI: 10.1158/1538-7445.AM2013-3704; http://cancerres.aacrjournals.org/content/73/8_Supplement/3704. ISSN: 0008-5472.
  16. Epicatechin protects from doxorubicin induced cardiotoxicity without affecting its cytotoxic profile in breast cancer cells. Alshehri, Ohoud Y., et al., et al. [ed.] George C. Prendergast. 14, Wynnewood: American Association for Cancer Research, July 2016, Cancer Research, Vol. 76, p. Supplement; Abstract 263. DOI: 10.1158/1538-7445.AM2016-263; http://cancerres.aacrjournals.org/content/76/14_Supplement/263. ISSN: 0008-5472.
  17. Effect of eriodictyol on preneoplastic lesions, oxidative stress and bacterial enzymes in 1,2-dimethyl hydrazine-induced colon carcinogenesis. Mariyappan, P., Kalaiyarasua, T. and Manju, V. [ed.] Nigel Gooderham. 5, London: Royal Society of Chemistry; The British Toxicology Society and The Chinese Society of Toxicology, June 19, 2017, Toxicology Research, Vol. 6, pp. 678-692. DOI: 10.1039/C7TX00074J; http://pubs.rsc.org/en/Content/ArticleLanding/2017/TX/C7TX00074J#!divAbstract. ISSN: 2045-4538.
  18. Eriodictyol-induced anti-cancer and apoptotic effects in human hepatocellular carcinoma cells are associated with cell cycle arrest and modulation of apoptosis-related proteins. Wang, Fang, et al., et al. [ed.] Mir Misbahuddin. 2, Dhaka: Bangladesh Pharmacological Society, 2016, Bangladesh Journal of Pharmacology, Vol. 11. DOI: 10.3329/bjp.v11i2.25549; https://www.banglajol.info/index.php/BJP/article/view/25549. eISSN: 1991-0088.
  19. Anti-melanogenesis and antigenotoxic activities of eriodictyol in murine melanoma (B16-F10) and primary human keratinocyte cells. Imen, Mokdad-Bzeouich, et al., et al. [ed.] Loren E. Wold. Columbus: Elsevier Inc., August 15, 2015, Life Sciences, Vol. 135, pp. 173-178. DOI: 10.1016/j.lfs.2015.06.022; http://www.sciencedirect.com/science/article/pii/S002432051500346X?via%3Dihub. ISSN: 0024-3205.
  20. Eriodictyol attenuates cisplatin-induced kidney injury by inhibiting oxidative stress and inflammation. Li, Cheng-zhen, et al., et al. [ed.] F.P. Nijkamp. Utrecht: Elsevier B.V., February 5, 2016, European Journal of Pharmacology, Vol. 772, pp. 124-130. DOI: 10.1016/j.ejphar.2015.12.042; http://www.sciencedirect.com/science/article/pii/S0014299915304374?via%3Dihub. ISSN: 0014-2999.
  21. Martins, Isabela Mateus, Chen, Qianru and Chen, C.Y. Oliver. Emerging Functional Foods Derived from Almonds. [ed.] Isabel C.F.R. Ferreira, Patricia Morales and Lillian Barros. Wild Plants, Mushrooms and Nuts: Functional Food Properties and Applications. First Edition. Chichester; Hoboken: John Wiley & Sons, Ltd, 2017, 14, pp. 445-470. ISBN: 978-1-11-894464-6.
  22. Ajila, C.M. and Brar, S.K. Role of Dietary Antioxidants in Cancer. [ed.] Sharmila Shankar and Rakesh K. Srivastava. Nutrition, Diet and Cancer. New York: Springer Science+Business Media B.V., 2012, 16, pp. 377-412. ISBN: 978-94-007-2922-3.
  23. Alcohol Intake and Colorectal Cancer: A Pooled Analysis of 8 Cohort Studies. Cho, Eunyoung, et al., et al. [ed.] Harold C. Sox. 8, Lebanon: American College of Physicians, April 20, 2004, Annals of Internal Medicine, Vol. 140, pp. 603-613. DOI: 10.7326/0003-4819-140-8-200404200-00007; http://annals.org/article.aspx?articleid=717373. ISSN: 0003-4819.
  24. Isorhamnetin inhibits cell proliferation and induces apoptosis in breast cancer via Akt and mitogen activated protein kinase kinase signaling pathways. Hu, Shan, et al., et al. [ed.] Demetrios A. Spandidos. 5, Athens: Spandidos Publications, November 2015, Molecular Medicine Reports, Vol. 12, pp. 6745-6751. DOI: 10.3892/mmr.2015.4269; https://www.spandidos-publications.com/10.3892/mmr.2015.4269?text=abstract. ISSN: 1791-2997; PMCID: PMC4626180.
  25. Chemopreventive Activity of Plant Flavonoid Isorhamnetin in Colorectal Cancer Is Mediated by Oncogenic Src and β-Catenin. Saud, Shakir M., et al., et al. [ed.] George C. Prendergast. 17, Wynnewood: American Association for Cancer Research, September 2013, Cancer Research, Vol. 73, pp. 5473-5484. DOI: 10.1158/0008-5472.CAN-13-0525; http://cancerres.aacrjournals.org/content/73/17/5473. ISSN: 0008-5472; PMCID: PMC3870026.
  26. Isorhamnetin augments the anti-tumor effect of capecitabine through the negative regulation of NF-κB signaling cascade in gastric cancer. Manu, Kanjoormana A., et al., et al. [ed.] Manfred Schwab. 1, Heidelberg: Elsevier Ireland Ltd., July 10, 2015, Cancer Letters, Vol. 363, pp. 28-36. DOI: 10.1016/j.canlet.2015.03.033; http://linkinghub.elsevier.com/retrieve/pii/S0304383515002256. ISSN: 0304-3835.
  27. Autophagy inhibition enhances isorhamnetin induced mitochondria dependent apoptosis in non small cell lung cancer cells. Ruan, Yushu, Hu, Ke and Chen, Hongbo. [ed.] Demetrios A. Spandidos. 4, Athens: Spandidos Publications, October 2015, Molecular Medicine Reports, Vol. 12, pp. 5796-5806. DOI: 10.3892/mmr.2015.4148; https://www.spandidos-publications.com/10.3892/mmr.2015.4148?text=abstract. ISSN: 1791-2997; PMCID: PMC4581743.
  28. Inhibition of Isorhamnetin on [beta]-Catenin/Tcf Signaling and [beta]-Catenin-Activated Melanogenesis. Park, Seyeon, Choi, Hana and Kim, Yun Joo. [ed.] Rafeeq Alam Khan. Karachi: Lifescience Global, 2013, Journal of Basic and Applied Sciences, Vol. 9, pp. 401-409. ISSN: 1814-8085.
  29. Isorhamnetin Protects against Doxorubicin-Induced Cardiotoxicity In Vivo and In Vitro. Luo, Yun, et al., et al. [ed.] Rakesh Kukreja. 5, Richmond: Public Library of Science, May 28, 2013, PLoS ONE, Vol. 8, p. e64526. DOI: 10.1371/journal.pone.0064526; http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0064526. eISSN: 1932-6203; PMCID: PMC3665796.
  30. Ethyl acetate extract and its major constituent, isorhamnetin 3-O-rutinoside, from Nitraria retusa leaves, promote apoptosis of human myelogenous erythroleukaemia cells. Boubaker, J., et al., et al. [ed.] Catherine E. Sarraf. 5, London: John Wiley & Sons Ltd, October 2011, Cell Proliferation, Vol. 44, pp. 453-461. DOI: 10.1111/j.1365-2184.2011.00772.x; http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2184.2011.00772.x/abstract. eISSN: 1365-2184; PMID: 21951288.
  31. Holkova, Beata, Chanan-Khan, Asher A. and Takeshita, Kenichi. Drugs & Diseases - Hematology: Erythroleukemia. Medscape. [Online] WebMD LLC, December 29, 2015. [Cited: March 1, 2018.] https://emedicine.medscape.com/article/199965-overview.
  32. Kaempferol suppresses bladder cancer tumor growth by inhibiting cell proliferation and inducing apoptosis. Dang, Qiang, et al., et al. [ed.] John DiGiovanni. 9, Austin: Wiley-Liss, Inc.: John Wiley & Sons, Inc., September 2015, Molecular Carcinogenesis, Vol. 54, pp. 831-840. DOI: 10.1002/mc.22154; http://onlinelibrary.wiley.com/doi/10.1002/mc.22154/abstract. ISSN: 1098-2744; PMID: 24700700.
  33. Inhibitory effects of kaempferol on the invasion of human breast carcinoma cells by downregulating the expression and activity of matrix metalloproteinase-9. Li, Chenglin, et al., et al. [ed.] Jim Davie and Chris Nelson. 1, Manitoba; Victoria: Canadian Science Publishing: NRC Research Press, February 2015, Biochemistry and Cell Biology, Vol. 93, pp. 16-27. DOI: 10.1139/bcb-2014-0067; http://www.nrcresearchpress.com/doi/10.1139/bcb-2014-0067#.WmJIRjZOWpo. eISSN: 1208-6002; PMID: 25453494.
  34. Low dose of kaempferol suppresses the migration and invasion of triple-negative breast cancer cells by downregulating the activities of RhoA and Rac1. Li, S., et al., et al. [ed.] Faris Farassati. 10, Kansas City: Dove Press Ltd, October 3, 2017, OncoTargets and Therapy, Vol. 2017, pp. 4809-4819. DOI: 10.2147/OTT.S140886; https://www.dovepress.com/low-dose-of-kaempferol-suppresses-the-migration-and-invasion-of-triple-peer-reviewed-article-OTT. ISSN: 1178-6930; PMID: 29042792.
  35. The mechanism of kaempferol induced apoptosis and inhibited proliferation in human cervical cancer SiHa cell: From macro to nano. Tu, Lv-Ying, et al., et al. [ed.] B.L. Weeks. 6, Lubbock: Wiley Periodicals, Inc., November/December 2016, Scanning: The Journal of Scanning Microscopies, Vol. 38, pp. 644-653. DOI: 10.1002/sca.21312; http://onlinelibrary.wiley.com/doi/10.1002/sca.21312/abstract. eISSN: 1932-8745; PMID: 26890985.
  36. Kaempferol inhibits the growth and metastasis of cholangiocarcinoma in vitro and in vivo. Qin, Youyou, et al., et al. [ed.] Boliang Li. 3, Shanghai: Oxford University Press, March 1, 2016, Acta Biochimica et Biophysica Sinica, Vol. 48, pp. 238-245. DOI: 10.1093/abbs/gmv133; https://academic.oup.com/abbs/article/48/3/238/2194548. eISSN: 1745-7270; PMID: 26883800.
  37. Kaempferol Induces Cell Cycle Arrest in HT-29 Human Colon Cancer Cells. Cho, Han Jin and Park, Jung Han Yoon. [ed.] Marc Diederich. 3, Seoul: Korean Society of Cancer Prevention, September 30, 2013, Journal of Cancer Prevention, Vol. 18, pp. 257-263. DOI: 10.15430/JCP.2013.18.3.257; http://www.jcpjournal.org/journal/view.html?volume=18&number=3&spage=257&year=2013. eISSN: 2288-3657; PMID: 25337553.
  38. Kaempferol Induces DNA Damage and Inhibits DNA Repair Associated Protein Expressions in Human Promyelocytic Leukemia HL-60 Cells. Wu, Lung-Yuan, et al., et al. [ed.] Chun-Su Yuan. 2, Chicago: World Scientific Publishing Co Pte Ltd, March 17, 2015, The American Journal of Chinese Medicine, Vol. 43, pp. 365-382. DOI: 10.1142/S0192415X1550024X; http://www.worldscientific.com/doi/abs/10.1142/S0192415X1550024X. ISSN: 1793-6853; PMID: 25779644.
  39. Kaempferol induces autophagy through AMPK and AKT signaling molecules and causes G2/M arrest via downregulation of CDK1/cyclin B in SK-HEP-1 human hepatic cancer cells. Huang, Wen-Wen, et al., et al. [ed.] Demetrios A. Spandidos. 6, Athens: Spandidos Publications, June 213, International Journal of Oncology, Vol. 42, pp. 2069-2077. DOI: 10.3892/ijo.2013.1909; https://www.spandidos-publications.com/10.3892/ijo.2013.1909. ISSN: 1019-6439; PMID: 23591552.
  40. Kaempferol Suppresses Transforming Growth Factor-β1-Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-179. Jo, Eunji, et al., et al. [ed.] Alnawaz Rehemtulla. 7, Ann Arbor: Elsevier Inc., July 2015, Neoplasia, Vol. 17, pp. 525-537. DOI: 10.1016/j.neo.2015.06.004; http://linkinghub.elsevier.com/retrieve/pii/S1476558615000810. ISSN: 1476-5586; PMID: 26297431.
  41. Kaempferol Reduces Matrix Metalloproteinase-2 Expression by Down-Regulating ERK1/2 and the Activator Protein-1 Signaling Pathways in Oral Cancer Cells. Sun, Jing, et al., et al. [ed.] Xin-Yuan Guan. 11, Hong Kong: Public Library of Science, November 20, 2013, PLoS ONE, Vol. 8, p. e80883. DOI: 10.1371/journal.pone.0080883; http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0080883. eISSN: 1932-6203; PMID: 24278338.
  42. Kaempferol suppresses cell metastasis via inhibition of the ERK-p38-JNK and AP-1 signaling pathways in U-2 OS human osteosarcoma cells. Chen, Hui-Jye, et al., et al. [ed.] Demetrios A. Spandidos. 2, Athens: Spandidos Publications, August 2013, Oncology Reports, Vol. 30, pp. 925-932. DOI: 10.3892/or.2013.2490; https://www.spandidos-publications.com/10.3892/or.2013.2490. ISSN: 1021-335X; PMID: 23708932.
  43. Kaempferol Sensitizes Human Ovarian Cancer Cells-OVCAR-3 and SKOV-3 to Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)-Induced Apoptosis via JNK/ERK-CHOP Pathway and Up-Regulation of Death Receptors 4 and 5. Zhao, Yingmei, et al., et al. [ed.] George B. Stefano. Old Westbury: International Scientific Information, Inc., October 26, 2017, Medical Science Monitor, Vol. 23, pp. 5096-5105. DOI: 10.12659/MSM.903552; https://www.medscimonit.com/abstract/index/idArt/903552. eISSN: 1643-3750; PMID: 29070784.
  44. Kaempferol Inhibits Pancreatic Cancer Cell Growth and Migration through the Blockade of EGFR-Related Pathway In Vitro. Lee, Jungwhoi and Kim, Jae Hoon. [ed.] Aldo Scarpa. 5, Verona: Public Library of Science, May 13, 2016, PLoS ONE, Vol. 11, p. e0155264. DOI: 10.1371/journal.pone.0155264; http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0155264. eISSN: 1932-6203; PMID: 27175782.
  45. Kaempferol Inhibits the Invasion and Migration of Renal Cancer Cells through the Downregulation of AKT and FAK Pathways. Hung, Tung-Wei, et al., et al. [ed.] Dennis D. Taub. 10, Washington, DC: Ivyspring International Publisher, August 18, 2017, International Journal of Medical Sciences, Vol. 14, pp. 984-993. DOI: 10.7150/ijms.20336; http://www.medsci.org/v14p0984.htm. ISSN: 1449-1907; PMID: 28924370.
  46. Kaempferol targets estrogen-related receptor alpha and inhibits cell proliferation and invasion in retinoblastoma via Wnt/beta-catenin signaling pathway. Qin, Bo, et al., et al. [ed.] Jin-Xiong She. 11, Augusta: e-Century Publishing Corporation, November 30, 2016, International Journal of Clinical and Experimental Medicine, Vol. 9, pp. 21415-21423. eISSN: 1940-5901.
  47. Kaempferol Targets RSK2 and MSK1 to Suppress UV Radiation-Induced Skin Cancer. Yao, Ke, et al., et al. [ed.] Scott M. Lippman. 9, Philadelphia: American Association for Cancer Research, September 2014, Cancer Prevention Research, Vol. 7, pp. 958-967. DOI: 10.1158/1940-6207.CAPR-14-0126; http://cancerpreventionresearch.aacrjournals.org/content/7/9/958. ISSN: 1940-6207; PMID: 24994661.
  48. Kaempferol inhibits gastric cancer tumor growth: An in vitro and in vivo study. Song, Haibin, et al., et al. [ed.] Demetrios A. Spandidos. 2, Athens: Spandidos Publications, February 2015, Oncology Reports, Vol. 33, pp. 868-874. DOI: 10.3892/or.2014.3662; https://www.spandidos-publications.com/10.3892/or.2014.3662. ISSN: 1021-335X; PMID: 25500692.
  49. Kaempferol protects against doxorubicin-induced cardiotoxicity in vivo and in vitro. Xiao, Jing, et al., et al. [ed.] H.W.J. Marquardt and K.B. Wallace. 1, Hamburg; Duluth: Elsevier Ireland Ltd., February 6, 2012, Toxicology, Vol. 292, pp. 53-62. DOI: 10.1016/j.tox.2011.11.018; http://www.sciencedirect.com/science/article/pii/S0300483X11005038?via%3Dihub. ISSN: 0300-483X; PMID: 22155320.
  50. The inhibitory role of Kaempferol-3-O-rutinoside induced AMPK activation on the growth of human breast cancer cell lines. Kim, Chea Ha. Washington, DC; Philadelphia: American Association for Cancer Research, 2017. Proceedings of the American Association for Cancer Research Annual Meeting 2017. DOI: 10.1158/1538-7445.AM2017-2323; http://cancerres.aacrjournals.org/content/77/13_Supplement/2323. Abstract 2323.
  51. Hepatoprotective effects of kaempferol 3-O-rutinoside and kaempferol 3-O-glucoside from Carthamus tinctorius L. on CCl4-induced oxidative liver injury in mice. Wang, Yu, Tang, Changyun and Zhang, Hao. [ed.] Lucy Sun Hwang. 2, Taipei: Elsevier Taiwan LLC.; Food and Drug Administration of Taiwan, June 2015, Journal of Food and Drug Analysis, Vol. 23, pp. 310-317. DOI: 10.1016/j.jfda.2014.10.002; http://linkinghub.elsevier.com/retrieve/pii/S1021949814001343. ISSN: 1021-9498; PMID: 28911387.
  52. The Antitumor Activities of Flavonoids. Kanadaswami, Chithan, et al., et al. [ed.] John G. Delinasios. 5, Athens: International Institute of Anticancer Research, Sep-Oct 2005, In Vivo, Vol. 19, pp. 895-910. ISSN: 0258-851X.
  53. Abstract 5309: Dietary magnesium is inversely associated with colorectal cancer risk in the Atherosclerosis Risk in Communities study. Onyeaghala, Guillaume C., et al., et al. Washington, DC: American Association for Cancer Research, Proceedings: AACR Annual Meeting 2017; April 1-5, 2017. DOI: 10.1158/1538-7445.AM2017-5309; http://cancerres.aacrjournals.org/content/77/13_Supplement/5309. ISSN: 0008-5472.
  54. Magnesium intake and incidence of pancreatic cancer: the VITamins and Lifestyle study. Dibaba, Daniel, et al., et al. [ed.] Adrian L. Harris. Oxford: Nature Publishing Group, December 1, 2015, British Journal of Cancer, Vol. 113, pp. 1615-1621. DOI: 10.1038/bjc.2015.382; http://www.nature.com/articles/bjc2015382. ISSN: 0306-5251; PMID: 26554653.
  55. Short hydration regimen with magnesium supplementation prevents cisplatin-induced nephrotoxicity in lung cancer: a retrospective analysis. Yamaguchi, Teppei, et al., et al. [ed.] Fred Ashbury. 4, Toronto: Springer-Verlag, April 2017, Supportive Care in Cancer, Vol. 25, pp. 1215-1220. DOI: 10.1007/s00520-016-3512-8; https://link.springer.com/article/10.1007%2Fs00520-016-3512-8. ISSN: 0941-4355; PMID: 27966021.
  56. The association between deficient manganese levels and breast cancer: a meta-analysis. Shen, Fei, et al., et al. [ed.] Ping Zhang. 3, Rootstown: e-Century Publishing Corporation, March 15, 2015, International Journal of Clinical and Experimental Medicine, Vol. 8, pp. 3671-3680. eISSN: 1940-5901; PMCID: PMC4443096.
  57. Manganese Inhibits Viability of Prostate Cancer Cells. Hernroth, Bodil, et al., et al. [ed.] George J. Delinasios. 1, Athens: The International Institute of Anticancer Research, January 2018, Anticancer Research, Vol. 38, pp. 137-145. DOI: 10.21873/anticanres.12201; http://ar.iiarjournals.org/content/38/1/137.abstract. ISSN: 0250-7005; PMID: 29277766.
  58. Naringenin inhibits migration of bladder cancer cells through downregulation of AKT and MMP 2. Liao, Alex Chien Hwa, et al., et al. [ed.] Demetrios A. Spandidos. 3, Athens: Spandidos Publications, September 2014, Molecular Medicine Reports, Vol. 10, pp. 1531-1536. DOI: 10.3892/mmr.2014.2375; https://www.spandidos-publications.com/10.3892/mmr.2014.2375. ISSN: 1791-2997; PMID: 25017119.
  59. In Vitro Effect of 8-Prenylnaringenin and Naringenin on Fibroblasts and Glioblastoma Cells-Cellular Accumulation and Cytotoxicity. Stompor, Monika, Uram, Łukasz and Podgórski, Rafał. [ed.] Derek J. McPhee. 7, Emeryville: MDPI AG, June 30, 2017, Molecules, Vol. 22, p. pii: E1092. DOI: 10.3390/molecules22071092; http://www.mdpi.com/1420-3049/22/7/1092. ISSN: 1420-3049; PMID: 28665345.
  60. Ramos, Joseph, et al., et al. Naringenin Inhibits Proliferation and Survival of Tamoxifen‐Resistant Breast Cancer Cells. [ed.] Phuc Van Pham. Breast Cancer - From Biology to Medicine. London; Rijeka: InTech, 2017, 26. ISBN: 978-953-51-3000-0.
  61. Naringenin suppresses growth of human placental choriocarcinoma via reactive oxygen species-mediated P38 and JNK MAPK pathways. Park, Sunwoo, et al., et al. [ed.] Thomas Efferth. Mainz: Elsevier GmbH: Urban and Fischer, September 1, 2017, Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, Vols. In Press, Accepted Manuscript. DOI: 10.1016/j.phymed.2017.08.026; http://www.sciencedirect.com/science/article/pii/S0944711317301150?via%3Dihub. ISSN: 0944-7113.
  62. Naringenin-Mediated ATF3 Expression Contributes to Apoptosis in Human Colon Cancer. Song, Hun Min, et al., et al. [ed.] Minsoo Noh. 2, Seoul: The Korean Society of Applied Pharmacology, March 1, 2016, Biomolecules & Therapeutics, Vol. 24, pp. 140-146. DOI: 10.4062/biomolther.2015.109; http://www.biomolther.org/journal/view.html?volume=24&number=2&spage=140&year=2016. ISSN: 1976-9148; PMID: 26797111.
  63. Naringenin suppresses TPA-induced tumor invasion by suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. Yen, Hung-Rong, Liu, Ching-Ju and Yeh, Chia-Chou. [ed.] Daniel R. Dietrich. Konstanz: Elsevier Ireland Ltd., June 25, 2015, Chemico-Biological Interactions, Vol. 235, pp. 1-9. DOI: 10.1016/j.cbi.2015.04.003; http://linkinghub.elsevier.com/retrieve/pii/S0009279715001477. ISSN: 0009-2797; PMID: 25866363.
  64. Naringenin inhibits migration of lung cancer cells via the inhibition of matrix metalloproteinases-2 and -9. Chang, Huai Lu, et al., et al. [ed.] Demetrios A. Spandidos. 2, Athens: Spandidos Publications, February 2017, Experimental and Therapeutic Medicine, Vol. 13, pp. 739-744. DOI: 10.3892/etm.2016.3994; https://www.spandidos-publications.com/10.3892/etm.2016.3994. ISSN: 1792-0981; PMID: 28352360.
  65. Naringenin causes ASK1-induced apoptosis via reactive oxygen species in human pancreatic cancer cells. Park, Hyun Jin, et al., et al. [ed.] José L. Domingo. Catalonia: Elsevier Inc., January 2017, Food and Chemical Toxicology, Vol. 99, pp. 1-8. DOI: 10.1016/j.fct.2016.11.008; http://www.sciencedirect.com/science/article/pii/S0278691516304094?via%3Dihub. ISSN: 0278-6915; PMID: 27838343.
  66. Naringenin-Induced Apoptotic Cell Death in Prostate Cancer Cells Is Mediated via the PI3K/AKT and MAPK Signaling Pathways. Lim, Whasun, et al., et al. [ed.] C. Fred Fox, Gary S. Stein and Max M. Burger. 5, Los Angeles; Burlington; Basel: Wiley-Liss, Inc., May 2017, Journal of Cellular Biochemistry, Vol. 118, pp. 1118-1131. DOI: 10.1002/jcb.25729; http://onlinelibrary.wiley.com/doi/10.1002/jcb.25729/abstract. eISSN: 1097-4644; PMID: 27606834.
  67. Denatonium and Naringenin Promote SCA-9 Tumor Growth and Angiogenesis: Participation of Arginase. Dmytrenko, Ganna, Castro, María E. and Sales, María E. [ed.] Leonard A. Cohen. 5, Valhalla: Taylor and Francis Group, LLC, July 6, 2017, Nutrition and Cancer, Vol. 69, pp. 780-790. DOI: 10.1080/01635581.2017.1328605; http://www.tandfonline.com/doi/full/10.1080/01635581.2017.1328605. ISSN: 0163-5581; PMID: 28682138.
  68. Altgelt, Johanna, Ly, Helen and McCulloch, Michael. Ovarian Cancer, Chemotherapy, & Antioxidants. Pine Street Foundation. [Online] September 22, 2008. [Cited: January 25, 2018.] http://pinestreetfoundation.org/ovarian-cancer-chemotherapy-antioxidants/.
  69. Characterisation of stilbenes in California almonds (Prunus dulcis) by UHPLC-MS. Xie, Liyang and Bolling, Bradley W. [ed.] Paul Finglas. Norwich: Elsevier Ltd., April 1, 2014, Food Chemistry, Vol. 148, pp. 300-306. DOI: 10.1016/j.foodchem.2013.10.057; http://linkinghub.elsevier.com/retrieve/pii/S0308814613014933. ISSN: 0308-8146; PMID: 24262561.
  70. Resveratrol, Acetyl-Resveratrol, and Polydatin Exhibit Antigrowth Activity against 3D Cell Aggregates of the SKOV-3 and OVCAR-8 Ovarian Cancer Cell Lines. Hogg, Simon J., et al., et al. [ed.] Curt W. Burger. Article ID 279591, Rotterdam: Hindawi Limited, September 14, 2015, Obstetrics and Gynecology International, Vol. 2015, pp. 1-14. DOI: 10.1155/2015/279591; https://www.hindawi.com/journals/ogi/2015/279591/. ISSN: 1687-9589; PMID: 26617640.
  71. Immune-dependent antineoplastic effects of cisplatin plus pyridoxine in non-small-cell lung cancer. Aranda, F., et al., et al. [ed.] Douglas R. Green. 23, Memphis: Nature Publishing Group, June 4, 2015, Oncogene, Vol. 34, pp. 3053-3062. DOI: 10.1038/onc.2014.234; http://www.nature.com/articles/onc2014234. ISSN: 0950-9232; PMID: 25065595.
  72. Newsholme, Eric A. and Leech, Tony R. Nutrition: Biochemistry, Physiology and Pathology. Functional Biochemistry in Health and Disease. Chichester: Wiley-Blackwell: John Wiley & Sons, Ltd, 2010, 15, pp. 331-362. ISBN: 978-0-471-98820-5.
  73. Natural products as inducers of apoptosis: Implication for cancer therapy and prevention. Taraphdar, Amit K., Roy, Madhumita and Bhattacharya, R.K. [ed.] P. Balaram. 11, Bangalore: Indian Academy of Sciences, June 10, 2001, Current Science, Vol. 80, pp. 1387-1396. ISSN: 0011-3891.
  74. Boik, John. Natural Compounds in Cancer Therapy: Promising Nontoxic Antitumor Agents from Plants & Other Natural Sources. [ed.] Silvine Farnell. Princeton: Oregon Medical Press, LLC, 2001. ISBN: 0-9648280-1-4.
  75. Dietary Polyphenols and Their Biological Significance. Han, Xiuzhen, Shen, Tao and Lou, Hongxiang. [ed.] Michael N. Hall. 9, Basel: MDPI - Open Access Publishing, September 12, 2007, International Journal of Molecular Sciences, Vol. 8, pp. 950-988. DOI: 10.3390/i8090950; http://www.mdpi.com/1422-0067/8/9/950. ISSN: 1422-0067.
  76. Priyadarsini, Ramamurthi Vidya and Nagini, Siddavaram. Aberrant Signaling Pathways in Cancer: Modulation by the Dietary Flavonoid, Quercetin. [ed.] Sharmila Shankar and Rakesh K. Srivastava. Nutrition, Diet and Cancer. New York: Springer Science+Business Media B.V., 2012, 1, pp. 1-22. ISBN: 978-94-007-2922-3.
  77. Growth inhibitory effect of quercetin on SW 872 human liposarcoma cells. Huang, Shih-Li, Hsu, Chin-Lin and Yen, Gow-Chin. [ed.] Bertil Fredholm and Frank Porreca. 2, Solna; Tucson: Elsevier Inc., June 6, 2006, Life Sciences, Vol. 79, pp. 203-209. DOI: 10.1016/j.lfs.2005.12.046; http://linkinghub.elsevier.com/retrieve/pii/S0024320506000257. ISSN: 0024-3205; PMID: 16455111.
  78. Chemoprevention of liver cancer by plant polyphenols. Stagos, Dimitrios, et al., et al. [ed.] A. Wallace Hayes. 6, Andover: Elsevier Inc, June 2012, Food and Chemical Toxicology, Vol. 50, pp. 2155-2170. DOI: 10.1016/j.fct.2012.04.002; http://www.sciencedirect.com/science/article/pii/S0278691512002748. ISSN: 0278-6915.
  79. Tumor Angiogenesis as a Target for Dietary Cancer Prevention. Li, William W., et al., et al. [ed.] Kalpna Gupta. Article ID 879623, Minneapolis: Hindawi Publishing Corporation, September 29, 2011, Journal of Oncology, Vol. 2012, pp. 1-23. DOI: 10.1155/2012/879623; http://www.hindawi.com/journals/jo/2012/879623/. ISSN: 1687-8469.
  80. Panich, Uraiwan. Antioxidant Defense and UV-Induced Melanogenesis: Implications for Melanoma. [ed.] Ming Yu Cao. Current Management of Malignant Melanoma. Ottawa: InTech, 2011, 12, pp. 227-252. ISBN: 978-953-307-264-7.
  81. Quercetin Inhibits Cell Migration and Invasion in Human Osteosarcoma Cells. Lan, H., et al., et al. [ed.] W. Guggino and F. Lang. 2, Baltimore; Tübingen: S. Karger AG, Basel, October 2017, Cellular Physiology and Biochemistry, Vol. 43, pp. 553-567. DOI: 10.1159/000480528; https://www.karger.com/Article/FullText/480528. ISSN: 1015-8987; PMID: 28965117.
  82. Food-Derived Polyphenols Inhibit Pancreatic Cancer Growth Through Mitochondrial Cytochrome C Release and Apoptosis. Mouria, Michelle, et al., et al. [ed.] Harald zur Hausen. 5, Heidelberg: John Wiley & Sons, Inc.: UICC, April 10, 2002, International Journal of Cancer, Vol. 98, pp. 761-769. DOI: 10.1002/ijc.10202; http://onlinelibrary.wiley.com/doi/10.1002/ijc.10202/abstract. ISSN: 1097-0215.
  83. Molecular targets of dietary agents for prevention and therapy of cancer. Aggarwal, Bharat B. and Shishodia, Shishir. [ed.] Sam J. Enna. 10, Kansas City: Elsevier Inc., May 14, 2006, Biochemical Pharmacology, Vol. 71, pp. 1397-1421. DOI: 10.1016/j.bcp.2006.02.009; http://www.sciencedirect.com/science/article/pii/S0006295206000955. ISSN: 0006-2952; PMID: 16563357.
  84. Quercetin attenuates the development of 7, 12-dimethyl benz (a) anthracene (DMBA) and croton oil-induced skin cancer in mice. Ali, Huma and Dixit, Savita. [ed.] Qi Chen. 2, Jiangsu: Nanjing Medical University, April 2015, The Journal of Biomedical Research, Vol. 29, pp. 139-144. DOI: 10.7555/JBR.29.20130025; http://www.jbr-pub.org/ch/reader/view_abstract.aspx?file_no=JBR150209&flag=1. ISSN: 1674-8301; PMCID: PMC4389114.
  85. Combination of quercetin and hyperoside inhibits prostate cancer cell growth and metastasis via regulation of microRNA 21. Yang, Feng Qiang, et al., et al. [ed.] Demetrios A. Spandidos. 2, Athens: Spandidos Publications, February 2015, Molecular Medicine Reports, Vol. 11, pp. 1085-1092. DOI: 10.3892/mmr.2014.2813; https://www.spandidos-publications.com/mmr/11/2/1085?text=fulltext. ISSN: 1791-2997; PMID: 25354548.
  86. Hyperoside enhances the suppressive effects of arsenic trioxide on acute myeloid leukemia cells. Zhang, Feng, et al., et al. [ed.] Ping Zhang. 9, Rootstown: e-Century Publishing Corporation, September 15, 2015, International Journal of Clinical and Experimental Medicine, Vol. 8, pp. 15290-15295. eISSN: 1940-5901; PMCID: PMC4658905.
  87. Hyperoside and rutin of Nelumbo nucifera induce mitochondrial apoptosis through a caspase-dependent mechanism in HT-29 human colon cancer cells. Guon, Tae Eun and Chung, Ha Sook. [ed.] Demetrios A. Spandidos. 4, Athens: Spandidos Publications, April 2016, Oncology Letters, Vol. 11, pp. 2463-2470. DOI: 10.3892/ol.2016.4247; https://www.spandidos-publications.com/10.3892/ol.2016.4247. ISSN: 1792-1074; PMID: 27073499.
  88. Combination of quercetin and hyperoside has anticancer effects on renal cancer cells through inhibition of oncogenic microRNA-27a. Li, Wei, et al., et al. [ed.] Demetrios A. Spandidos. 1, Athens: Spandidos Publications, January 2014, Oncology Reports, Vol. 31, pp. 117-124. DOI: 10.3892/or.2013.2811; https://www.spandidos-publications.com/or/31/1/117?text=fulltext. ISSN: 1021-335X; PMID: 24173369.
  89. Hyperoside induces both autophagy and apoptosis in non-small cell lung cancer cells in vitro. Fu, Ting, et al., et al. [ed.] Jian Ding. 4, Shanghai: Nature Publishing Group, April 2016, Acta Pharmacologica Sinica, Vol. 37, pp. 505-518. DOI: 10.1038/aps.2015.148; http://www.nature.com/articles/aps2015148. ISSN: 1671-4083; PMCID: PMC4820797.
  90. Hyperoside, a Flavonoid Compound, Inhibits Proliferation and Stimulates Osteogenic Differentiation of Human Osteosarcoma Cells. Zhang, Ning, et al., et al. [ed.] Douglas Thamm. 7, Fort Collins: Public Library of Science, July 1, 2014, PLoS ONE, Vol. 9, p. e98973. DOI: 10.1371/journal.pone.0098973; http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0098973. eISSN: 1932-6203; PMCID: PMC4077650.
  91. PGRMC1-dependent autophagy by hyperoside induces apoptosis and sensitizes ovarian cancer cells to cisplatin treatment. Zhu, Xiaofei, et al., et al. [ed.] Demetrios A. Spandidos. 3, Athens: Spandidos Publications, March 2017, International Journal of Oncology, Vol. 50, pp. 835-846. DOI: 10.3892/ijo.2017.3873; https://www.spandidos-publications.com/ijo/50/3/835?text=fulltext. ISSN: 1019-6439; PMID: 28197632.
  92. Hyperoside induces apoptosis and inhibits growth in pancreatic cancer via Bcl-2 family and NF-κB signaling pathway both in vitro and in vivo. Li, Yilong, et al., et al. [ed.] Torgny Stigbrand. 6, Umeå: SAGE Publications Ltd.; International Society of Oncology and BioMarkers (ISOBM), June 2016, Tumor Biology, Vol. 37, pp. 745-7355. DOI: 10.1007/s13277-015-4552-2; https://link.springer.com/article/10.1007%2Fs13277-015-4552-2. ISSN: 1010-4283; PMID: 26676634.
  93. The effects of hyperoside on apoptosis and the expression of Fas/FasL and survivin in SW579 human thyroid squamous cell carcinoma cell line. Liu, Zhenfang, et al., et al. [ed.] Demetrios A. Spandidos. 2, Athens: Spandidos Publications, August 2017, Oncology Letters, Vol. 14, pp. 2310-2314. DOI: 10.3892/ol.2017.6453; https://www.spandidos-publications.com/10.3892/ol.2017.6453. ISSN: 1792-1074; PMID: 28789450.
  94. Preventive Efficacy of Vanillic Acid on Regulation of Redox Homeostasis, Matrix Metalloproteinases and Cyclin D1 in Rats Bearing Endometrial Carcinoma. Bhavani, Pakkiri, Subramanian, Perumal and Kanimozhi, Sivamani. [ed.] Praveen Sharma. 4, Jaipur: Springer-Verlag, October 2017, Indian Journal of Clinical Biochemistry, Vol. 32, pp. 429-436. DOI: 10.1007/s12291-016-0605-6; https://link.springer.com/article/10.1007%2Fs12291-016-0605-6. ISSN: 0970-1915; PMID: 29062174.
  95. The Beneficial Effect of Vanillic Acid on Ulcerative Colitis. Kim, Su-Jin, et al., et al. [ed.] Derek J. McPhee. 10, Emeryville: MDPI AG, October 19, 2010, Molecules, Vol. 15, pp. 7208-7217. DOI: 10.3390/molecules15107208; http://www.mdpi.com/1420-3049/15/10/7208. ISSN: 1420-3049; PMID: 20959795.
  96. Hepatoprotective Effect of Syringic Acid and Vanillic Acid on CCl4-Induced Liver Injury. Itoh, Ayano, et al., et al. [ed.] Naoto Oku. 6, Shizuoka: International Academic Printing Co., Ltd.: The Pharmaceutical Society of Japan, 2010, Biological and Pharmaceutical Bulletin, Vol. 33, pp. 983-987. DOI: 10.1248/bpb.33.983; https://www.jstage.jst.go.jp/article/bpb/33/6/33_6_983/_article. ISSN: 0918-6158; PMID: 20522963.
  97. Assessment of Lipid Peroxidation and Antioxidant Status in Vanillic Acid Treated 7,12-Dimethylbenz[a]anthracene Induced Hamster Buccal Pouch Carcinogenesis. Anbalagan, Vinoth, Raju, Kowsalya and Shanmugam, Manoharan. [ed.] Hemant Jain. 3, Delhi: JCDR Research and Publications (P) Limited, March 1, 2017, Journal of Clinical and Diagnostic Research, Vol. 11, pp. BF01-BF04. DOI: 10.7860/JCDR/2017/23537.9369; http://jcdr.net/article_fulltext.asp?issn=0973-709x&year=2017&volume=11&issue=3&page=BF01&issn=0973-709x&id=9369. ISSN: 2249-782X.
  98. Nephroprotective effect of vanillic acid against cisplatin induced nephrotoxicity in wistar rats: A biochemical and molecular study. Sindhu, Ganapathy, Nishanthi, Emayavaramban and Sharmila, Ramalingam. [ed.] N.P.E. Vermeulen and M.D. Coleman. 1, Amsterdam; Birmingham: Elsevier B.V., January 2015, Environmental Toxicology and Pharmacology, Vol. 39, pp. 392-404. DOI: 10.1016/j.etap.2014.12.008; http://www.sciencedirect.com/science/article/pii/S138266891400310X?via%3Dihub. ISSN: 1382-6689; PMID: 25561092.
  99. Tocopherols in cancer: An update. Gupta, Soumyasri Das and Suh, Nanjoo. [ed.] Hans-Ulrich Humpf. 6, Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, June 2016, Molecular Nutrition & Food Research, Vol. 60, pp. 1354-1363. DOI: 10.1002/mnfr.201500847; http://onlinelibrary.wiley.com/doi/10.1002/mnfr.201500847/abstract. ISSN: 1613-4133; PMID: 26751721.
  100. Skin Cancer: Dance of Death. Saha, Dibyajyoti, et al., et al. [ed.] Monika S. Daharwal. 2, Raipur: Asian Pharma Press, April-June 2011, Asian Journal of Pharmaceutical Research, Vol. 1, pp. 34-36. ISSN: 2231-5683.
  101. Almond Consumption during Energy Restriction Lowers Truncal Fat and Blood Pressure in Compliant Overweight or Obese Adults. Dhillon, Jaapna, Tan, Sze-Yen and Mattes, Richard D. [ed.] Teresa A. Davis. 12, Houston: American Society for Nutrition, December 1, 2016, The Journal of Nutrition, Vol. 146, pp. 2513-2519. DOI: 10.3945/jn.116.238444; http://jn.nutrition.org/content/146/12/2513. ISSN: 0022-3166; PMID: 27807041.
  102. The effects of daily intake timing of almond on the body composition and blood lipid profile of healthy adults. Liu, Yanan, et al., et al. [ed.] Jayong Chung and Jeong-Weon Kim. 6, Seoul: Korean Nutrition Society and the Korean Society of Community Nutrition, November 22, 2017, Nutrition Research and Practice, Vol. 11, pp. 479-486. DOI: 10.4162/nrp.2017.11.6.479; https://synapse.koreamed.org/DOIx.php?id=10.4162/nrp.2017.11.6.479. ISSN: 1976-1457; PMID: 29209458.
  103. Almond supplementation reduces serum uric acid in coronary artery disease patients: a randomized controlled trial. Jamshed, Humaira, et al., et al. [ed.] Clare Collins and Sharon Kirkpatrick. 1, Newcastle; Waterloo: BioMed Central Ltd, August 19, 2016, Nutrition Journal, Vol. 15, p. 77. DOI: 10.1186/s12937-016-0195-4; https://nutritionj.biomedcentral.com/articles/10.1186/s12937-016-0195-4. ISSN: 1475-2891; PMID: 27543277.
  104. Differential effects of walnuts vs almonds on improving metabolic and endocrine parameters in PCOS. Kalgaonkar, S., et al., et al. [ed.] Manfred James Müller. 3, Kiel: Nature Publishing Group, March 2011, European Journal of Clinical Nutrition, Vol. 65, pp. 386-393. DOI: 10.1038/ejcn.2010.266; http://www.nature.com/articles/ejcn2010266. ISSN: 0954-3007; PMID: 21157477.
  105. Polyphenol content and antioxidant activity of California almonds depend on cultivar and harvest year. Bolling, Bradley W., et al., et al. [ed.] Gordon G. Birch. 3, Reading: Elsevier Ltd., October 1, 2010, Food Chemistry, Vol. 122, pp. 819-825. DOI: 10.1016/j.foodchem.2010.03.068; https://www.sciencedirect.com/science/article/pii/S0308814610003456?via%3Dihub. ISSN: 0308-8146; PMCID: PMC4276397.
  106. Polyphenol and nutrient release from skin of almonds during simulated human digestion. Mandalari, G., et al., et al. [ed.] Gordon G. Birch. 4, Reading: Elsevier Ltd., October 15, 2010, Food Chemistry, Vol. 122, pp. 1083-1088. DOI: 10.1016/j.foodchem.2010.03.079; http://linkinghub.elsevier.com/retrieve/pii/S0308814610003729. ISSN: 0308-8146; PMID:27649239.
  107. Milk Stimulates Growth of Prostate Cancer Cells in Culture. Tate, Patricia L., Bibb, Robert and Larcom, Lyndon L. [ed.] Leonard A. Cohen. 8, Valhalla: Taylor and Francis Group, LLC, November 2011, Nutrition and Cancer, Vol. 63, pp. 1361-1366. DOI: 10.1080/01635581.2011.609306; https://www.tandfonline.com/doi/abs/10.1080/01635581.2011.609306. ISSN: 0163-5581; PMID: 22043817.
  108. The uses and properties of almond oil. Ahmad, Zeeshan. [ed.] Denise Rankin-Box. 1, Macclesfield: Elsevier Ltd., February 2010, Complementary Therapies in Clinical Practice, Vol. 16, pp. 10-12. DOI: 10.1016/j.ctcp.2009.06.015; https://www.sciencedirect.com/science/article/pii/S1744388109000772?via%3Dihub. ISSN: 1744-3881; PMID: 20129403.
  109. Effect of pre-treatment of almond oil on ultraviolet B-induced cutaneous photoaging in mice. Sultana, Yasmin, et al., et al. [ed.] Zoe Diana Draelos. 1, Winston-Salem: Wiley-Blackwell, March 2007, Journal of Cosmetic Dermatology, Vol. 6, pp. 14-19. DOI: 10.1111/j.1473-2165.2007.00293.x; http://onlinelibrary.wiley.com/doi/10.1111/j.1473-2165.2007.00293.x/abstract. eISSN: 1473-2165; PMID: 17348990.
  110. Effects of Plant-Based Diets High in Raw or Roasted Almonds, or Roasted Almond Butter on Serum Lipoproteins in Humans. Spiller, Gene A., et al., et al. [ed.] David M. Klurfeld. 3, Beltsville: Taylor & Francis Group, June 2003, Journal of the American College of Nutrition, Vol. 22, pp. 195-200. DOI: 10.1080/07315724.2003.10719293; https://www.tandfonline.com/doi/abs/10.1080/07315724.2003.10719293. ISSN: 0731-5724; PMID: 12805245.